Part A: Cell Potential and Concentration

True or False

_____ A concentration cell is an electrochemical cell that is comprised of two half-cells with the same electrodes, but differing in concentrations.

_____ In a concentration cell, electrons move from the higher concentration cell to the lower concentration cell.

_____ A pH meter is a specific type of concentration cell that uses the basic setup of a concentration cell to determine the pH, or the acidity/basicity, of a specific solution.

1. For the concentration cell bellow determine which compartment contains the anode and which contains the cathode. Then determine the flow of electrons.

Compartment 1 Compartment 2 Fe|Fe²⁺(aq, 0.01M)||Fe²⁺(aq, 0.1M)|Fe

2. Calculate cell potential, E_{cell} , for the concentration cell listed above. Use the Nernst equation listed below.

$$E_{cell} = E^o_{cell} - rac{0.0592}{n} log Q$$

Do you know the value for E^o_{cell}?

Calculate the concentration of the unknown, given the equation below and a cell potential, E_{cell} = 0.26V.

Ag|Ag+(xM)||Ag+(1.0M)|Ag

Part B: Properties of Transition Metals

True and False

_____As we move across the periodic table from left to right, the radii for transition metals decreases then increases slightly. Why?_____

_____As we move down a group (from row 1 to 2), the radii for transition metals increases.

Why?_____

_____As we move across the periodic table from left to right, ionization energy increases. The Ionization energy of Zn is much much greater than Cr. Why?_____

4. What is the oxidation state of the metal in the oxides listed below?

- a) $ScCl_2$
- b) TiO
- c) V₂O₅
- d) Cr_2O_3
- $e) \quad MnF_2$
- f) KMnO₄

For compounds a-f, write the electron configuration for the transition metals.

^{5.} As you can see from your answer in 4, there are many possible oxidation states for transition metals. What is a common oxidation state for transition metal ions? Why?

Name:

Part C: Complex ions or Coordination Complexes

Coordination Complexes are Complex ions. They consist of a transition metal and one or more small molecules (known as Ligands) that are attached. The bonding interaction between the transition metal and the ligand is a Lewis Acid-Base interaction. Fill out the following missing blanks in the table.

Example	Chemical Formula	Lewis Acid	Lewis Base	Coordination number
$\begin{bmatrix} NH_3 \\ H_3N \\ H_3N \\ H_3N \end{bmatrix}^+ \begin{bmatrix} NH_3 \\ NH_3 \\ H_3N \end{bmatrix}$				
$\begin{bmatrix} H_{3}N \\ H_{3}N \\ H_{3}N \\ H_{3}N \\ H_{3}N \end{bmatrix}^{+} C\Gamma$				
$\begin{bmatrix} OH_2 \\ H_2O \\ H_2O \\ H_2O \\ H_2O \end{bmatrix}^+ Cr$				
	$[Ag(NH_3)_2]^+$			
	[PtCl ₆] ²⁻			
	[Fe(H ₂ O) ₄ Cl ₂]			

Name:

In Exp 14, you will synthesize one of the following cobalt compounds. From the formulas, practice drawing the structures.

1) [Co(NH₃)₅Cl]Cl₂

2) [Co(NH₃)₅(H₂O)]Cl₃

3) [Co(NH₃)₅(ONO)]Cl₂

4) $[Co(NH_3)_5(NO_2)]Cl_2$

5) [Co(NH₃)₆]Cl₃